2-Restricted Optimal Rubbling of Graphs

Robert A. Beeler, Teresa Haynes, Kyle Murphy*

For a graph $G = (V, E)$, a pebbling distribution f is defined as $f : V \rightarrow \mathbb{Z}^+$, where each vertex $v \in V$ begins with $f(v)$ pebbles. A pebbling move takes two pebbles from some vertex adjacent to v and places one pebble on v. A rubbling move takes one pebble from each of two vertices that are adjacent to v and places one pebble on v. A vertex x is reachable under a pebbling distribution f if there exists some sequence of rubbling and pebbling moves that places a pebble on x. A pebbling distribution where every vertex is reachable is called a rubbling configuration. The t-restricted optimal rubbling number of G is the minimum number of pebbles required for a rubbling configuration where no vertex is assigned more than t pebbles. Here we present results on the 2-restricted optimal rubbling number.