On 2-fold graceful labelings of graphs

Megan Cornett, Indiana State University; Joel Jeffries*, Tarkio High School, Missouri; Ellen Sparks, Illinois State University

Let \(\mathbb{Z} \) denote the set of integers and \(\mathbb{N} \) denote the set of nonnegative integers. For integers \(a \) and \(b \) with \(a \leq b \), let \([a, b] = \{x \in \mathbb{Z} : a \leq x \leq b\} \). For a positive integer \(k \), let \(2K_k \) denote the 2-fold complete mutigraph of order \(k \). Similarly, let \(2[a, b] \) denote the multiset that contains every element of \([a, b]\) exactly two times. Let \(G \) be a multigraph of size \(n \), order at most \(n + 1 \), and edge multiplicity at most 2. A labeling of \(G \) is a one-to-one function \(f: V(G) \to \mathbb{N} \). If \(f \) is a labeling of \(G \) and \(e = \{u, v\} \in E(G) \), let \(\bar{f}(e) = |f(u) - f(v)| \). A 2-fold graceful labeling of \(G \) is a one-to-one function \(f: V(G) \to [0, n] \) such that:

\[
\{\bar{f}(e) : e \in E(G)\} = \begin{cases}
2[1, \frac{n}{2}] & \text{if } n \text{ is even,} \\
2[1, \frac{n-1}{2}] \cup \{\frac{n+1}{2}\} & \text{if } n \text{ is odd.}
\end{cases}
\]

A graph \(G \) is said to be 2-fold graceful if it admits a 2-fold graceful labeling. It is known that if \(G \) with \(n \) edges is 2-fold graceful, then there exists a cyclic \(G \)-decomposition of \(2K_{n+1} \). It is conjectured that every tree is 2-fold graceful. We investigate 2-fold graceful labelings of various classes of graphs including several classes of trees. This work was completed as part of the Illinois State University REU for Pre-service and In-service Secondary Mathematics Teachers.

Keywords: graceful labeling, cyclic graph decomposition, 2-fold graceful