In 1989, Gaetano Quattrocchi gave a complete solution of the intersection problem for maximum packings of K_{6n+5} with triples when the leave (a 4–cycle) is the same in each maximum packing. Quattrocchi showed that $I[2] = 2$ and $I[n] = \{0, 1, 2, \ldots, \left(\frac{n}{2}\right) - 1\} = \{x, x - 1, x - 2, x - 3, x - 5\}$ for all $n \equiv 5 \pmod{6} \geq 11$. We extend this result by removing the exceptions $\{x - 1, x - 2, x - 3, x - 5\}$ when the leaves are not necessarily the same. In particular, we show that $I[n] = \{0, 1, 2, \ldots, \left(\frac{n}{2}\right) - 1\}$ for all $n \equiv 5 \pmod{6}$.